35 research outputs found

    The Native Production of the Sesquiterpene Isopterocarpolone by \u3cem\u3eStreptomyces\u3c/em\u3e sp. RM-14-6

    Get PDF
    We report the production, isolation and structure elucidation of the sesquiterpene isopterocarpolone from an Appalachian isolate Streptomyces species RM-14-6. While isopterocarpolone was previously put forth as a putative plant metabolite, this study highlights the first native bacterial production of isopterocarpolone and the first full characterisation of isopterocarpolone using 1D and 2D NMR spectroscopy and HR-ESI mass spectrometry. Considering the biosynthesis of closely related metabolites (geosmin or 5-epiaristolochene), the structure of isopterocarpolone also suggests the potential participation of one or more unique enzymatic transformations. In this context, this work also sets the stage for the elucidation of potentially novel bacterial biosynthetic machinery

    Herbimycins D-F, Ansamycin Analogues from \u3cem\u3eStreptomyces\u3c/em\u3e sp. RM-7-15

    Get PDF
    Bacterial strains belonging to the class actinomycetes were isolated from the soil near a thermal vent of the Ruth Mullins coal fire (Appalachian mountains of Eastern Kentucky). High resolution electrospray ionization mass spectrometry (HR-ESI-MS) and ultraviolet (UV) absorption profiles of metabolites from one of the isolates (Streptomyces sp. RM-7-15) revealed the presence of a unique set of metabolites ultimately determined to be herbimycins D-F (1–3). In addition, herbimycin A (4), dihydroherbimycin A (TAN 420E) (7), and the structurally distinct antibiotic bicycylomycin were isolated from the crude extract of Streptomyces sp. RM-7-15. Herbimycins A, D-F (1–3) displayed comparable binding affinities to the Hsp90α. While the new analogues were found to be inactive in cancer cell cytotoxicity and antimicrobial assays, they may offer new insights in the context of non-toxic ansamycin-based Hsp90 inhibitors for the treatment of neurodegenerative disease

    Structure Determination, Functional Characterization, and Biosynthetic Implications of Nybomycin Metabolites from a Mining Reclamation Site-Associated \u3cem\u3eStreptomyces\u3c/em\u3e

    Get PDF
    We report the isolation and characterization of three new nybomycins (nybomycins B–D, 1–3) and six known compounds (nybomycin, 4; deoxynyboquinone, 5; α-rubromycin, 6; β-rubromycin, 7; γ-rubromycin, 8; and [2α(1E,3E),4β]-2-(1,3-pentadienyl)-4-piperidinol, 9) from the Rock Creek (McCreary County, KY) underground coal mine acid reclamation site isolate Streptomyces sp. AD-3-6. Nybomycin D (3) and deoxynyboquinone (5) displayed moderate (3) to potent (5) cancer cell line cytotoxicity and displayed weak to moderate anti-Gram-(+) bacterial activity, whereas rubromycins 6–8 displayed little to no cancer cell line cytotoxicity but moderate to potent anti-Gram-(+) bacterial and antifungal activity. Assessment of the impact of 3 or 5 cancer cell line treatment on 4E-BP1 phosphorylation, a predictive marker of ROS-mediated control of cap-dependent translation, also revealed deoxynyboquinone (5)-mediated downstream inhibition of 4E-BP1p. Evaluation of 1–9 in a recently established axolotl embryo tail regeneration assay also highlighted the prototypical telomerase inhibitor γ-rubromycin (8) as a new inhibitor of tail regeneration. Cumulatively, this work highlights an alternative nybomycin production strain, a small set of new nybomycin metabolites, and previously unknown functions of rubromycins (antifungal activity and inhibition of tail regeneration) and also provides a basis for revision of the previously proposed nybomycin biosynthetic pathway

    Spoxazomicin D and Oxachelin C, Potent Neuroprotective Carboxamides from the Appalachian Coal Fire-Associated Isolate \u3cem\u3eStreptomyces\u3c/em\u3e sp. RM-14- 6

    Get PDF
    The isolation and structure elucidation of six new bacterial metabolites [spoxazomicin D (2), oxachelins B and C (4, 5), and carboxamides 6–8] and 11 previously reported bacterial metabolites (1, 3, 9–12a, and 14–18) from Streptomyces sp. RM-14-6 is reported. Structures were elucidated on the basis of comprehensive 1D and 2D NMR and mass spectrometry data analysis, along with direct comparison to synthetic standards for 2, 11, and 12a,b. Complete 2D NMR assignments for the known metabolites lenoremycin (9) and lenoremycin sodium salt (10) were also provided for the first time. Comparative analysis also provided the basis for structural revision of several previously reported putative aziridine-containing compounds [exemplified by madurastatins A1, B1, C1 (also known as MBJ-0034), and MBJ-0035] as phenol-dihydrooxazoles. Bioactivity analysis [including antibacterial, antifungal, cancer cell line cytotoxicity, unfolded protein response (UPR) modulation, and EtOH damage neuroprotection] revealed 2 and 5 as potent neuroprotectives and lenoremycin (9) and its sodium salt (10) as potent UPR modulators, highlighting new functions for phenol-oxazolines/salicylates and polyether pharmacophores

    Puromycins B-E, Naturally Occurring Amino-Nucleosides Produced by the Himalayan Isolate \u3cem\u3eStreptomyces\u3c/em\u3e sp. PU-14G.

    Get PDF
    The isolation and structure elucidation of four new naturally occurring amino-nucleoside [puromycins B–E (1–4)] metabolites from a Himalayan isolate (Streptomyces sp. PU-14-G, isolated from the Bara Gali region of northern Pakistan) is reported. Consistent with prior reports, comparative antimicrobial assays revealed the need for the free 2″-amine for anti-Gram-positive bacteria and antimycobacterial activity. Similarly, comparative cancer cell line cytotoxicity assays highlighted the importance of the puromycin-free 2″-amine and the impact of 3′-nucleoside substitution. These studies extend the repertoire of known naturally occurring puromycins and their corresponding SAR. Notably, 1 represents the first reported naturally occurring bacterial puromycin-related metabolite with a 3′-N-amino acid substitution that differs from the 3′-N-tyrosinyl of classical puromycin-type natural products. This discovery suggests the biosynthesis of 1 in Streptomyces sp. PU-14G may invoke a uniquely permissive amino-nucleoside synthetase and/or multiple synthetases and sets the stage for further studies to elucidate, and potentially exploit, new biocatalysts for puromycin chemoenzymatic diversification

    Cytotoxic Indolocarbazoles from \u3cem\u3eActinomadura melliaura\u3c/em\u3e ATCC 39691

    No full text
    Actinomadura melliaura ATCC 39691, a strain isolated from a soil sample collected in Bristol Cove, California, is a known producer of the disaccharide-substituted AT2433 indolocarbazoles (6–9). Reinvestigation of this strain using new media conditions led to \u3e40-fold improvement in the production of previously reported AT2433 metabolites and the isolation and structure elucidation of the four new analogues, AT2433-A3, A4, A5, and B3 (1–4). The availability of this broader set of compounds enabled a subsequent small antibacterial/fungal/cancer SAR study that revealed disaccharyl substitution, N-6 methylation, and C-11 chlorination as key modulators of bioactivity. The slightly improved anticancer potency of the newly reported N-6-desmethyl 1 (compared to 6) contrasts extensive SAR of monoglycosylated rebeccamycin-type topoisomerase I inhibitors where N-6 alkylation has contributed to improved potency and ADME. Complete 2D NMR assignments for the known metabolite BMY-41219 (5) and 13C NMR spectroscopic data for the known analogue AT2433-B1 (7) are also provided for the first time

    Puromycins B–E, Naturally Occurring Amino-Nucleosides Produced by the Himalayan Isolate \u3cem\u3eStreptomyces\u3c/em\u3e sp. PU-14G

    No full text
    The isolation and structure elucidation of four new naturally occurring amino-nucleoside [puromycins B–E (1–4)] metabolites from a Himalayan isolate (Streptomyces sp. PU-14-G, isolated from the Bara Gali region of northern Pakistan) is reported. Consistent with prior reports, comparative antimicrobial assays revealed the need for the free 2″-amine for anti-Gram-positive bacteria and antimycobacterial activity. Similarly, comparative cancer cell line cytotoxicity assays highlighted the importance of the puromycin-free 2″-amine and the impact of 3′-nucleoside substitution. These studies extend the repertoire of known naturally occurring puromycins and their corresponding SAR. Notably, 1 represents the first reported naturally occurring bacterial puromycin-related metabolite with a 3′-N-amino acid substitution that differs from the 3′-N-tyrosinyl of classical puromycin-type natural products. This discovery suggests the biosynthesis of 1 in Streptomyces sp. PU-14G may invoke a uniquely permissive amino-nucleoside synthetase and/or multiple synthetases and sets the stage for further studies to elucidate, and potentially exploit, new biocatalysts for puromycin chemoenzymatic diversification

    Antibacterial Muraymycins from Mutant Strains of <i>Streptomyces</i> sp. NRRL 30471

    No full text
    Muraymycins are nucleoside antibiotics isolated from <i>Streptomyces</i> sp. NRRL 30471 and several mutant strains thereof that were generated by random, chemical mutagenesis. Reinvestigation of two mutant strains using new media conditions led to the isolation of three new muraymycin congeners, named B8, B9, and C6 (<b>1</b>–<b>3</b>), as well as a known muraymycin, C1. Structures of the compounds were elucidated by HRMS and 1D and 2D NMR spectroscopic analyses. Complete 2D NMR assignments for the known muraymycin C1 are also provided for the first time. Compounds <b>1</b> and <b>2</b>, which differ from other muraymycins by having an elongated, terminally branched fatty acid side chain, had picomolar IC<sub>50</sub> values against <i>Staphylococcus aureus</i> and <i>Aquifex aeolicus</i> MraY and showed good antibacterial activity against <i>S. aureus</i> (MIC = 2 and 6 μg/mL, respectively) and <i>Escherichia coli</i> Δ<i>tolC</i> (MIC = 4 and 2 μg/mL, respectively). Compound <b>3</b>, which is characterized by an <i>N</i>-acetyl modification of the primary amine of the dissacharide core that is shared among nearly all of the reported muraymycin congeners, greatly reduced its inhibitory and antibacterial activity compared to nonacylated muraymycin C1, which possibly indicates this modification is used for self-resistance

    Jatrophacine, a 4,5-<i>seco</i>-rhamnofolane diterpenoid with potent anti-inflammatory activity from <i>Jatropha curcas</i>

    No full text
    A new diterpenoid named jatrophacine (1), with an unusual 4,5-seco- rhamnofolane skeleton, was isolated from the roots of Jatropha curcas, together with eleven known diterpenoids. The structure of the new compound was elucidated through a detailed analysis of its 1 D- and 2 D-NMR spectra. The X-ray structure of jatrophol (2) is also presented. Anti-inflammatory activity with LPS-induced RAW 264.7 macrophages revealed that compound 1 strongly inhibited the production of nitric oxide (IC50 = 0.53 μM). </p

    Antibacterial and Cytotoxic Actinomycins Y6-Y9 from \u3cem\u3eStreptomyces\u3c/em\u3e sp. Strain Gö-GS12

    No full text
    Four new Y-type actinomycin analogues named Y6–Y9 (1–4) were isolated and characterized from the scale up fermentation of the Streptomyces sp. strain Gö-GS12, as well as actinomycin Zp (5) that was, for the first time, isolated as a natural product. Structures of the new compounds were elucidated by the cumulative analyses of NMR spectroscopy and HRMS. The 4-hydroxythreonine on the β-ring of 1 uniquely undergoes both a rearrangement by a two-fold acyl shift and an additional ring closure with the amino group of the phenoxazinone chromophore, and the α-rings of 4 and 5 contain a rare 5-methyl proline. Compounds 2–5 showed potent antibacterial activities against Gram-positive bacteria that correlated with cytotoxicity against representative human cell lines. The combination of a β-ring rearrangement and additional ring closure in 1 rendered this actinomycin significantly less potent relative to the non-rearranged comparator actinomycin Y5 and other actinomycins
    corecore